Seed Algorithms

Introduction

N -cycles are particular permutations of cube pieces where N pieces are permuted in a single cycle. Among these are even parity permutations, for which an odd number of pieces are permuted. It may be of interest to find short algorithms for cycling up to 7 corners, 11 midges, 23 edges and 23 centers, without messing up other pieces.

In this context, a seed algorithm can be defined as a short algorithm that could generate a set of algorithms, by rotation/reflection, inversion, cyclic-shift, adding 1, 2 or 3 moves to the left or 1, 2 or 3 setup moves. Seed algorithms are irreducible, meaning that they can't be obtained from each other by inversion, cyclic-shift or symmetry considerations (see: http://www.mementoslangues.fr/CubeDesign/CubeTheory/CubeSymmetry.pdf).

[N3R2 N3U2, L' NU' L NU]
[N3R2 N3U2, R' NU R NU']
Although quite similar, these 2 algorithms can't be obtained from each other by cube symmetry considerations.

Group Theory - Useful Links
 http://en.wikipedia.org/wiki/Permutation

By applying basic group theory to the cube, it can be inferred that (see links above for more details):

- Conjugacy Class:

If A is an algorithm that generates a permutation of a given cycle type, then conjugate $B A B '$ is also an algorithm that will generate another permutation of the same cycle type. This means that conjugating an algorithm will not change the cycle type of the associated permutation, or more explicitely if A generates a 7-cycle of corner-centers, then B A B' will also generate a 7-cycle of corner-centers. This is a very simple means of building a set of algorithms of a given cycle type from an already known 'seed' algorithm. The operation of conjugating an algorithm is also known as 'setup'. In most practical cases, setup moves are 1-, 2- or 3-move long. By using a set of different seed algorithms, it is usually possible to lower the number of needed setup moves from 3 to 2 or even 1.

- Coset:

If A is an algorithm that generates a permutation of a given cycle type, then $B A$ is also an algorithm that will generate another permutation, but which is generally of a different cycle type, although permutations of a same cycle type may be generated in some cases. This means that by inserting moves at the left, algorithms of a same cycle type may eventually be generated. Left added algorithms are usually 1-, 2- or 3-move long.

- Symmetry:

If A is an algorithm that generates a permutation of a given cycle type, then transformed algorithm $B(A)$, obtained by applying (anti)symmetry transformations on the set of letters $<F, R, U, L, D, B>$ is also an algorithm that will generate another permutation of the same cycle type. This means that transforming an algorithm using all 48 possible cube (anti)symmetries will not change the cycle type of the associated permutations, or more explicitely if A generates a 5-cycle of edge-centers, then 48 more algorithms may be obtained simply by transforming letters.

- Inversion:

If A is an algorithm that generates a permutation of a given cycle type, then inverted algorithm A^{\prime} is also an algorithm that will generate another permutation of the same cycle type. This means that for each already known algorithm, one more can be added simply by inversion.

- Cycle-Shift:

If A is an algorithm of length n that generates a permutation of a given cycle type, then the n algorithms obtained by cycle-shifting A will also generate permutations of the same cycle type. This means for example that alg NR' U N3R U' NR U N3R' U' and the shifted version U' NR' U N3R U' NR U N3R' will both give a 3-cycle of edge-centers.

Using a combination of all these techniques, ie. conjugation + left add + symmetry + inversion + cycle-shift, it is usually possible to generate many N -cycles of a given type from just a limited number of seed algorithms. The problem now is how to find short and irreducible seeds. This is where algorithm templates can come into play...

Semi-Commutators

Overview

It has already been demonstrated that all permutations of even parity can be written as commutators. But a more general way of describing a permutation of even parity would be as follows :
A (B C B')
where A, B and C are multiple move sequences, $\left(B C B^{\prime}\right)$ is a conjugator and C is a function of A.
If $C=A^{\prime}$, then this expression gives the well-known commutator $A B A^{\prime} B^{\prime}=[A, B]$. We can go further by stating that C can also be a function of A, provided that the parity of the permutation is kept even. By decomposing A into a sequence of n basic moves:

$$
A=A 1 A 2 A 3 \ldots A n
$$

sequence C can then be written as:

$$
\mathrm{C}=\mathrm{C} 1 \mathrm{C} 2 \mathrm{C} 3 \ldots \mathrm{Cn}
$$

There are now 2 possible cases that will keep parity:

$$
\begin{aligned}
& C=A n^{\prime} \ldots A 3^{\prime} A 2^{\prime} A 1^{\prime} \\
& C=A 1^{\prime} A 2^{\prime} A 3^{\prime} \ldots A n^{\prime}
\end{aligned}
$$

In the first case, we have the well-known commutator:

$$
\text { (A1 A2 A3 ... An) . B . (An' ... A3' A2' A1') . } \mathrm{B}^{\prime}=[\mathrm{A}, \mathrm{~B}]
$$

whereas in the second case, it is a semi-commutator:

$$
\left.\left.(A 1 A 2 A 3 \ldots A n) \cdot B \cdot\left(A 1^{\prime} A 2^{\prime} A 3^{\prime} \ldots A n^{\prime}\right) \cdot B^{\prime}=\right] A, B\right]
$$

There are just 4 ways of writing a semi-commutator:
(A1 A2) . (B1 B2) . (A1' A2') . (B2' B1') =]A1 A2, B1 B2]
(A1 A2) . (B1 B2) . (A1' A2') . (B1' B2') =]A1 A2, B1 B2[
(A1 A2) • (B1 B2) . (A2' A1') . (B1' B2') = [A1 A2, B1 B2[
(A1 A2) . (B1 B2) . (A2' A1') . (B2' B1') = [A1 A2, B1 B2]

We can see that semi-commutator \#4 is actually a commutator, so that a semi-commutator may simply be seen as an attempt to generalize the commutator concept.

Example

Semi-commutators may be useful for finding algorithms. Using for example a template such as]X Y, Z P Q P'] to search for 15 -cycles of corner-centers, will give the algorithm below, which is clearly not a commutator:

>]NR' NF', NL L' ND L] = NR' NF' . NL L' ND L . NR NF . L' ND' L NL'

But if it is written as a commutator, then we have a 9-cycle of corner-centers:
[NR' NF', NL L' ND L] = NR' NF' . NL L' ND L . NF NR . L' ND' L NL'

Block Decomposition

Another way of understanding semi-commutators is from block decomposition of a sequence of moves. Consider for example a first block of n moves followed by a second block of the same length: there must be the same number of moves and inverted moves in the complete sequence of 2 blocks, in order to keep the permutation parity even. There are many ways of re-arranging moves and inverted moves in the sequence. In a simple arrangement, all non-inverted moves are placed in the first block and all inverted moves in the second block:

First block: A1 A2 A3 ... An
Second block: same moves, but inverted, sequenced and partitioned differently
By using semi-commutators, there are just 4 different ways of re-arranging inverted moves in the second block.
This is shown in the table below, where a sequence of length 14 has been chosen and possible semicommutator structures are listed.

Block partitioning - Semi-Commutators - 14-Move Sequence Example			
Index	First Block of Moves	Second Block of Inverted Moves	Semi-Commutators/Commutators
1	(X Y Z P Q V A)	($\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}^{\prime} \mathrm{P}^{\prime} \mathrm{Q}^{\prime} \mathrm{V}^{\prime} \mathrm{A}^{\prime}$)	[X, Y Z P Q V A
2	(X) (Y Z P Q V A)	(X^{\prime}) ($\left.\mathrm{Y}^{\prime} \mathrm{Z}^{\prime} \mathrm{P}^{\prime} \mathrm{Q}^{\prime} \mathrm{V}^{\prime} \mathrm{A}^{\prime}\right)$	[X, Y Z P Q V A
3	(X) (Y Z P Q V A)	(X^{\prime}) ($\left.\mathrm{A}^{\prime} \mathrm{V}^{\prime} \mathrm{Q}^{\prime} \mathrm{P}^{\prime} \mathrm{Z}^{\prime} \mathrm{Y}^{\prime}\right)$	[X, Y Z P Q V A]
4	$(X Y)(Z P Q \vee A)$	($\left.X^{\prime} Y^{\prime}\right)\left(Z^{\prime} P^{\prime} Q^{\prime} V^{\prime} A^{\prime}\right)$] X Y, Z P Q V A
5	$(X Y)(Z P Q \vee A)$	($\mathrm{X}^{\prime} \mathrm{Y}^{\prime}$) ($\mathrm{A}^{\prime} \mathrm{V}^{\prime} \mathrm{Q}^{\prime} \mathrm{P}^{\prime} \mathrm{Z}^{\prime}$)] X Y, Z P Q V A]
6	$(X Y)(Z P Q \vee A)$	($\left.Y^{\prime} \mathrm{X}^{\prime}\right)\left(\mathrm{Z}^{\prime} \mathrm{P}^{\prime} Q^{\prime} \mathrm{V}^{\prime} A^{\prime}\right)$	[$\mathrm{XY}, \mathrm{ZPQQA}$ [
7	$(X Y)(Z P Q \vee A)$	($\mathrm{Y}^{\prime} \mathrm{X}^{\prime}$) ($\left.\mathrm{A}^{\prime} \mathrm{V}^{\prime} \mathrm{Q}^{\prime} \mathrm{P}^{\prime} \mathrm{Z}^{\prime}\right)$	[$\mathrm{XY}, \mathrm{ZPQ}$ Q A]
8	$(\mathrm{X} Y \mathrm{Z})(\mathrm{P} Q \times \mathrm{A})$	($\left.\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}^{\prime}\right)\left(\mathrm{P}^{\prime} \mathrm{Q}^{\prime} \mathrm{V}^{\prime} \mathrm{A}^{\prime}\right)$] X Y Z, P Q V A
9	$(X Y Z)(P Q \vee A)$	($X^{\prime} Y^{\prime} Z^{\prime}$) ($A^{\prime} V^{\prime} Q^{\prime} P^{\prime}$)] $\mathrm{XY} \mathrm{Z}, \mathrm{PQQVA]}$
10	$(X Y Z)(P Q \vee A)$	($Z^{\prime} Y^{\prime} \mathrm{X}^{\prime}$) ($\left.\mathrm{P}^{\prime} \mathrm{Q}^{\prime} \mathrm{V}^{\prime} \mathrm{A}^{\prime}\right)$	[X Y Z, PQ V A
11	(X Y Z) (P Q V A)	($\mathrm{Z}^{\prime} \mathrm{Y}^{\prime} \mathrm{X}^{\prime}$) ($\left.\mathrm{A}^{\prime} \mathrm{V}^{\prime} Q^{\prime} \mathrm{P}^{\prime}\right)$	[X Y Z, P Q V A]

Semi-commutator \#6 is then written as:
[X Y, Z P Q V A = X Y . Z P Q V A . Y' X' . Z' P' Q' V' A'
Whereas commutator \#7 would read:
[X Y, Z P Q V A] = X Y . Z P Q V A . Y' X' . A' V' Q' P' Z'

Usefulness

Semi-commutators are mainly used in searching for new algorithms and building arrays of seeds. For permutations involving more than 3 pieces, templates built on semi-commutators will usually give additional algorithms that will complement algorithms already found using commutators only.

Algorithm Templates

Algorithm Templates - Corner-Centers			
Template	Inverted Template	N -cycle	Moves
[X, Y Z P]	[X Y Z, P]	3-, 5-, 9-cycle	8
[$\mathrm{X}, \mathrm{Y} Z \mathrm{P}$ Q]	[$\mathrm{X} Y \mathrm{ZP}, \mathrm{Q}$]	7-, 11-, 13-cycle	10
[$\mathrm{X} \mathrm{Y}, \mathrm{ZPQ}$]	[$\mathrm{XY} \mathrm{Y}, \mathrm{P}$ Q]	17-cycle	10
[X Y, Z P Q V]	[XY Z P, Q V]	23-cycle	12
] $\mathrm{XY} \mathrm{Y}, \mathrm{ZPQV}$]	[XYZP, Q V]	15-cycle	12
[$\mathrm{X} Y, \mathrm{ZPQ} \mathrm{P}$ A]	[X Y Z P Q , V A]	19-, 21-cycle	14

Algorithm Templates - Edge-Centers			
Template	Inverted Template	N -cycle	Moves
[X, Y Z P]	[X Y Z, P]	3-cycle	8
[X Y, Z P Q V]	[$\mathrm{XYZP}, \mathrm{Q} \mathrm{V}$]	5-cycle	12
[$\mathrm{X} Y, Z \mathrm{ZPQVA}]$	[$\mathrm{XYZPQ}, \mathrm{VA}$]	7-cycle	14
[X Y, Z P Q V A G]	[XYZPQV, A G]	9 -cycle	16

Note:

 $[X Y, Z P Q V]=X Y . Z P Q V . Y^{\prime} X^{\prime} . V^{\prime} Q^{\prime} P^{\prime} Z^{\prime}$ is * a commutator
[X Y Z P, Q V $=X Y Z P . Q V . P^{\prime} Z^{\prime} Y^{\prime} X^{\prime} . Q^{\prime} V^{\prime}$ is *not* a commutator $[X Y, Z P Q V]=X Y Z P . Q V . P^{\prime} Z^{\prime} Y^{\prime} X^{\prime} . V^{\prime} Q^{\prime *}{ }^{*} s^{*}$ a commutator

Seed Algorithms

Seed Algorithms - Corner-Centers			
Commutator General Form: [N2 moves, Face + N2 moves]			
Template / Inverted Template	Seed Algorithms - Examples	N -cycle	Moves
[$\mathrm{X}, \mathrm{Y} Z \mathrm{P}$]/[XYZ, P]	[NR , F NL F']	3-cycle	8
[X, Y Z P]/[XYZ, P]	[NU , NL' U' NL']	$5-\mathrm{cycle}$	8
[X, Y Z P Q $] /[\mathrm{XYZP}, \mathrm{Q}]$	[NR^{\prime} ', NU' L2 NF' NU']	7 -cycle	10
[$X, Y Z P] /[X Y Z, P]$	[NB , NR B2 NU]	9 -cycle	8
[$\mathrm{X}, \mathrm{Y} Z \mathrm{P}$ Q]/[XYZP, Q]	[NF^{\prime}, NR' F NL' ${ }^{\text {NU'] }}$	11-cycle	10
[$\mathrm{X}, \mathrm{Y} Z \mathrm{P}$ Q]/[XYZP, Q]	[NL', ND' NF' L' NB']	13-cycle	10
]XY, Z P Q V]/[XYZP, Q V[]NR' NF', NL L' ND L]	15-cycle	12
[$\mathrm{XY}, \mathrm{ZPQ}$]/[$\mathrm{XYZ}, \mathrm{PQ}$]	[${ }^{\text {B }}$ NF', ${ }^{\prime}$ D F' NR]	17-cycle	10
[XY, Z P Q V A]/[XYZPQ, V A]	[NF2 NB', ND' F' NL ND NU']	19-cycle	14
[XY, ZPQVA]/[XYZPQ, V A]	[NB NF, NU F NL2 NF NL]	21-cycle	14
[$\mathrm{XY}, \mathrm{ZPQV}$]/[XYZP, Q V]	[NB NF', NR B' NL' ND]	23-cycle	12
2-Cycle + 2-Cycle			
[X, Y Z P]/[XYZ, P]	[NR, U2 NF2 U2]	$2 \mathrm{c}+2 \mathrm{c}$	8
[X, Y Z P [/]X Y Z, P]	[NU, F2 NR2 F2[$2 \mathrm{c}+2 \mathrm{c}$	8
]XY, Z P[/]X Y, ZP[]R2 NU, R2 NF2[$2 \mathrm{c}+2 \mathrm{c}$	8
4-Cycle + 2-Cycle			
[X, Y Z P Q]/[XYZP, Q]	[NR2, U' NL2 U NF2]	$4 \mathrm{c}+2 \mathrm{c}$	10
[$\mathrm{X} \mathrm{Y}, \mathrm{ZPQ}$]/[$\mathrm{XY} \mathrm{Z}, \mathrm{P}$ Q]	[NR U', NL NU2 NL']	$4 \mathrm{c}+2 \mathrm{c}$	10

Seed Algorithms - Edge-Centers

Commutator General Form: [N3 moves, Face + N2 moves]

Template / Inverted Template	Seed Algorithms - Examples	N-cycle	Moves
[X, Y Z P]/[X Y Z, P]	[N3R', U NR U']	3-cycle	8
[$\mathrm{XY} \mathrm{Y}, \mathrm{ZPQV}$]/[XYZP, Q V]	[N3R N3U, F' NR F NR']	5 -cycle	12
$[X Y, Z P Q \vee A] /[X Y Z P Q, V A]$	[N3R2 N3F2, F' U' NR' U F]	7-cycle	14
[XY, ZPQVAG]/[XYZPQV, A G]	[N3R N3U, R' F2 NU NL2 F2 R]	9 -cycle	16
2-Cycle + 2-Cycle			
[X, Y Z P]/[XYZ, P]	[N3R, F2 NU2 F2]	$2 \mathrm{c}+2 \mathrm{c}$	8
[X, Y Z P [/]X Y Z, P]	[N3F2, U2 NR' U2[$2 \mathrm{c}+2 \mathrm{c}$	8
4-Cycle + 2-Cycle			
[X Y, Z P Q V A]/[X Y Z P Q, V A]	[N3R N3U, R' F' NU F R]	$4 \mathrm{c}+2 \mathrm{c}$	14

Search for Irreducible Seed Algorithms - 1

Algorithm Finder can be used to search for irreducible seeds

Edge-Center 11-cycle - Selected params: set of 6-gen moves - 11 pieces - Permutation order: 11

All stickers of the first orbit of edge-centers have been set to -1 . Algorithms are then filtered out both by permutation order and by number of twisted/flipped/moved pieces.

Ti．Enregistrer une Mise page Visual Macros
Basic Uliser les reférences relatives
\qquad

A1 $\rightarrow f_{x}$ Seed Algorithms－ 320 filtered out／ 1280 processed
1 Seed Algorithms－ 320 filtered out／ 1280 processed
N3L N3U R F2 ND NL F2 R＇N3U＇N3L＇R F2 NL＇ND＇F2R
N3LN3U R F2 ND＇NL F2 R^{\prime} N3U＇N3L＇R F2 NL＇ND F2 $2 R^{\prime}$
－N3LN3URF2ND＇NL＇F2R＇N3U＇N3L＇RF2NLNDF2R
N3LN3URF2NLNDF2R＇N3U＇N3L＇RF2ND＇NL＇F2R＇
6 N3L N3U R F2 NL ND F2 R＇N3U＇N3L＇R F2 ND＇NL＇F2 R＇
N3L N3U R F2 NL ND＇F2 R＇N3U＇N3L＇R F2 ND NL＇F2 R
8 N3L N3U R F2 NL＇ND F2 R＇N3U＇N3L＇R F2 ND＇NL F2R
9 N3L N3U R F2 NL＇ND＇F2 R＇N3U＇N3L＇R F2 ND NL F2 R
10 N3L N3U＇R F2 ND NL F2 R＇N3U N3L＇R F2 NL＇ND＇F2 R＇
11
N3L N3U＇R F2 ND NL＇F2 R＇N3U N3L＇R F2 NL ND＇F2 R＇
11 N3L N3U＇R F2 ND NL＇F2 R＇N3U N3L＇R F2 NL ND＇F2 R＇
12 N3L N3U＇R F2 ND＇NL F2 R＇N3U N3L＇R F2 NL＇ND F2 R
12 N3L N3U＇R F2 ND＇NL F2 R＇N3U N3L＇R F2 NL＇ND F2 R＇
13
N3L N3U＇R F2 ND＇NL＇F2 R＇N3U N3L＇R F2 NL ND F2 R
13 N3L N3U＇R F2 ND＇NL＇F2 R＇N3U N3L＇R F2 NL ND F2 R＇
15 N3L N3U＇R F2 NL ND＇F2 R＇N3U N3L＇R F2 ND NL＇F2 R 16 N3L N3U＇R F2 NL＇ND F2 R＇N3U N3L＇R F2 ND＇NL F2 R＇ 17 N3L N3U＇R F2 NL＇ND＇F2 R＇N3U N3L＇R F2 ND NL F2 R 18 N3L＇N3U R F2 ND NL F2 R＇N3U＇N3L R F2 NL＇ND＇F2 R＇ 19 N3L＇N3U R F2 ND NL＇F2 R＇N3U＇N3L R F2 NL ND＇F2 R 20 N3L＇N3U R F2 ND＇NL F2 R＇N3U＇N3L R F2 NL＇ND F2 R 21 N3L＇N3U R F2 ND＇NL＇F2 R＇N3U＇N3L R F2 NL ND F2 R＇ 22 N3L＇N3U R F2 NL ND F2 R＇N3U＇N3L R F2 ND＇NL＇F2 R＇ 23 N3L＇N3U R F2 NL ND＇F2 R＇N3U＇N3L R F2 ND NL＇F2 R 24 N3L＇N3U R F2 NL＇ND F2 R＇N3U＇N3L R F2 ND＇NL F2 R 26 N3L＇N3U＇RF2 ND NLF2 R＇N3U N3LRF2 NL＇ND＇F2 R＇ 27 N3L＇N3U＇RF2ND NL＇F2 R＇N3UN3LRF2NLND＇F2R＇ 28 N3L＇N3U＇R F2ND＇NLE2 R＇N3 N3LRF2 NL＇NDF2R 28 NLI＇N3U＇R F2ND＇NL＇F2 R＇N3UN31RF2NLNDF2R 29 NL＇N3＇R F2NL ND F2 R＇N3 N3LRF2ND＇NL＇F2R 31 N3＇N3U＇RF2NLND＇F2 R＇N3 N3LRF2NDNL＇F2R 31 N3L N3U RF2NLND F2R N3UN3LRF2NDNLL2R 32 N3L NOU RF2NLNDF2RNUNGLRF2NDNLF2R 33 N3L＇N3U＇R F2 NL＇ND＇F2 R＇N3U N3L R F2 ND NL F2 R＇
34 N3U N3B R2 B＇NF NU B R2 N3B＇N3U＇R2 B＇NU＇NF＇B R2 35 N3U N3B R2 B＇NF NU＇B R2 N3B＇N3U＇R2 B＇NUNF＇BR2 36 N3U N3B R2 B＇NF＇NU B R2 N3B＇N3U＇R2 B＇NU＇NF B R2 37 N3U N3B R2 B＇NF＇NU＇B R2 N3B＇N3U＇R2 B＇NU NF B R2 If 4．Algorithms CubeLayout／3DCube SeedAlgorithms SeedAlgorithms＿J5 \＆DataBase＿Algorithms \＆DataBase＿CubeStates \＆Algorithms＿Cornill 1 ｜

B	C	D	E	
Index	Moves	Stickers	Order	
0	16	11	11	
1	16	11	11	
2	16	11	11	
3	16	11	11	
4	16	11	11	
5	16	11	11	
6	16	11	11	
7	16	11	11	
8	16	11	11	
9	16	11	11	
10	16	11	11	
11	16	11	11	
12	16	11	11	
13	16	11	11	
14	16	11	11	
15	16	11	11	
16	16	11	11	
17	16	11	11	
18	16	11	11	
19	16	11	11	
20	16	11	11	
21	16	11	11	
22	16	11	11	
23	16	11	11	
24	16	11	11	
25	16	11	11	
26	16	11	11	
27	16	11	11	
28	16	11	11	
29	16	11	11	
30	16	11	11	
31	16	11	11	
32	16	11	11	
33	16	11	11	
34	16	11	11	
35	16	11	11	
35				
	16	11		
2	16	11		
	11			

Edge－Center 11－cycle－Selected params：set of 6－gen moves－ 11 pieces－Permutation order： 11

Accueil Insertion Mise en page Formules Données Révision Affichage Développeur Acrobat

－Enregistrer unise en
He M Propriétés
Révision
ropriétés
AgorithmPicker7－Microsoft Excel

䔘
Visual
Basic
A1 $\quad . \quad f_{x}$ Seed Algorithms－ 152 filtered out／ 152 processed
1 Seed Algorithms -152 filtered out $/ 152$ processed
LMR＇D＇B＇U2 DL＇B U2 MR MU MF U2 B＇L D＇U2 B DL＇MF＇ML
LMR＇F＇DUFL＇D＇UMMUMFUDLF＇U＇D＇FL＇MF＇MU
LMRFD2UFLD2UMRUMFUD2LFUD2FLM
5 LMR＇F＇D2 U＇FL＇D2 UMR MUMFU＇D2 LF＇UD2FL＇MF＇MU＇
6 LMR＇F＇D2 U＇FL＇UD2 MR MUMFD2 U＇LF＇UD2 FL＇MF＇MU＇
7 LMR＇${ }^{\prime}$ UDFL＇U＇D＇MR MUMFDULF＇D＇U＇${ }^{\prime} L^{\prime} M F^{\prime} M U^{\prime}$
8 LMR＇${ }^{\prime}$ UDFL＇D＇U＇MR MUMFUDLF＇D＇U＇FL＇MF＇MU＇
9 LMR＇F＇U＇D2 FL＇UD2 MR MU MF D2 U＇LF＇D2 UFL＇MF＇MU＇
10 LMR＇F＇U＇D2 FL＇D2 UMR MUMFU＇D2 LF＇D2 UFL＇MF＇MU＇
11 LMR＇UB2 F＇U＇L＇B2 FMRMUMFF＇B2 LUFB2 U＇L＇MF＇MU＇ 12 LMR＇U B2 F＇U＇L＇FB2 MR MU MFB2 F＇LUFB2 U＇L＇MF＇MU 13 LMR＇UF＇B2 U＇L＇F B2 MR MU MFB2 F＇LUB2F U＇L＇MF＇MU 14 LMR＇UF＇B2 U＇L＇B2 F MR MU MFF＇B2 LUB2FU＇L＇MF＇MU 15 LMR＇U＇BFUL＇B＇${ }^{\prime}$ MR MUMFFBLU＇F＇B＇UL＇MF＇MU 16 LMR＇U＇BFUL＇F＇B＇MR MUMFBFLU＇F＇B＇UL＇MF＇MU 17 LMR＇U＇B＇F2 UL＇B F2 MR MUMFF2 B＇LU＇F2 BUL＇MF＇MU 18 LMR＇U＇B＇F2 UL＇F2 B MR MUMFB＇F2LU＇F2BUL＇MF＇MU 19 LMR＇U＇FBUL＇F＇B＇MRMUMFBFU＇B＇F＇UL＇MF＇MU＇ $20 L M R^{\prime} U^{\prime} F B U L^{\prime} B^{\prime} F^{\prime} M R M U M F F B L U^{\prime} B^{\prime} F^{\prime} U L^{\prime} M F^{\prime} M U$ 21 LMR＇U＇F＇D2 UL＇FD2 MR MUMFD2F＇LU＇D2FUL＇MF＇MU 22 LMR＇U＇F2 B＇L＇ 2 B MR MUMFB＇F2LU＇BF2 LIMF＇MU 23 MR＇UF ${ }^{\prime}$ UL＇ 24 MR＇RBU＇R＇L＇UB BRMUMFBU＇LRUB＇R＇L＇MF＇MU＇
 6 LMR＇RB＇${ }^{\prime} R^{\prime} L^{\prime} B U M R M U M F U^{\prime} L R U B R L^{\prime} L^{\prime} M U^{\prime}$
 27MRRARLD LMRDBRLDBMRMUFBDLRBDRLM 29 LMR＇RFD＇R＇L＇DF＇MRMUMFFD＇LRDF＇R＇L＇MF＇MU＇ 30 LMR＇RF＇UR＇L＇FU＇MRMUMFUF＇LRU＇FR＇L＇MF＇MU＇ 31 LMR＇RUB＇R＇L＇B U＇MRMUMFUB＇LRBU＇R＇L＇MF＇MU＇ 32 LMR＇RU＇B＇R＇L＇UBMRMUMFB＇U＇LRBUR＇L＇MF＇MU 33 LMR＇RU＇FR＇L＇UF＇MRMUMFFU＇LRF＇UR＇L＇MF＇MU 34 LMR＇R2 B＇UR2 L＇U＇B MR MUMFB＇UL R2 U＇B R2 L＇MF＇MU＇ 35 LMR＇R2 F＇DR2 L＇D＇FMR MU MF F＇DLR2 D＇FR2 L＇MF＇MU＇ 36 LMR＇R2 U＇B＇R2 L＇B UMRMUMF U＇B＇LR2 B UR2 L＇MF＇MU＇ $37 L^{\prime} M R^{\prime}$ B D F2 B＇L D＇F2 MR MUMFF2 DL＇B F2 D＇B＇LMF＇MU＇
圆 Proorietés du mappage 断 Importer
管 Kits d＇extension

Source $\begin{gathered}\text { Atits cextension } \\ \text { Actiser les données }\end{gathered}$ | $\begin{array}{c}\text { Panneau de } \\ \text { documents } \\ \text { Modifier }\end{array}$ |
| :---: |

Algorthms CubeLayout 3DCube SeedAlgorithms SeedAlgorithms＿］S DataBase＿Algorithms DataBase＿CubeStates Algorithms＿Cornil 1
 B ∞ $\begin{array}{ll}1 & \\ 2 & 22 \\ 3\end{array}$

Flipped Midge 11－cycle－Selected params：set of 6－gen moves－ 12 pieces－Permutation order： 22

