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Seed Algorithms 
 

Introduction 
 
N-cycles are particular permutations of cube pieces where N pieces are permuted in a single cycle. Among these 
are even parity permutations, for which an odd number of pieces are permuted. It may be of interest to find short 
algorithms for cycling up to 7 corners, 11 midges, 23 edges and 23 centers, without messing up other pieces. 
 
In this context, a seed algorithm can be defined as a short algorithm that could generate a set of algorithms, by 
rotation/reflection, inversion, cyclic-shift, adding 1, 2 or 3 moves to the left or 1, 2 or 3 setup moves. Seed 
algorithms are irreducible, meaning that they can’t be obtained from each other by inversion, cyclic-shift or 
symmetry considerations (see: http://www.mementoslangues.fr/CubeDesign/CubeTheory/CubeSymmetry.pdf). 
 

Irreducible Seed Algorithms – Edge-Centers – 5-Cycle 

  

  
[N3R2 N3U2, L' NU' L NU] [N3R2 N3U2, R' NU R NU'] 

Although quite similar, these 2 algorithms can’t be obtained from each other by cube symmetry considerations. 
 

http://www.mementoslangues.fr/�
http://www.mementoslangues.fr/CubeDesign/CubeTheory/CubeSymmetry.pdf�
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Basic Group Theory 
 

Group Theory – Useful Links 
http://en.wikipedia.org/wiki/Permutation 

http://en.wikipedia.org/wiki/Symmetric_group 
http://en.wikipedia.org/wiki/Conjugacy_class 

http://groupprops.subwiki.org/wiki/Cycle_type_of_a_permutation 
http://en.wikipedia.org/wiki/Coset 

 
By applying basic group theory to the cube, it can be inferred that (see links above for more details): 
 

- Conjugacy Class: 
If A is an algorithm that generates a permutation of a given cycle type, then conjugate B A B' is also an 
algorithm that will generate another permutation of the same cycle type. This means that conjugating an 
algorithm will not change the cycle type of the associated permutation, or more explicitely if A generates a 
7-cycle of corner-centers, then B A B' will also generate a 7-cycle of corner-centers. This is a very simple 
means of building a set of algorithms of a given cycle type from an already known 'seed' algorithm. The 
operation of conjugating an algorithm is also known as 'setup'. In most practical cases, setup moves are 
1-, 2- or 3-move long. By using a set of different seed algorithms, it is usually possible to lower the 
number of needed setup moves from 3 to 2 or even 1. 

- Coset: 
If A is an algorithm that generates a permutation of a given cycle type, then B A is also an algorithm that 
will generate another permutation, but which is generally of a different cycle type, although permutations 
of a same cycle type may be generated in some cases. This means that by inserting moves at the left, 
algorithms of a same cycle type may eventually be generated. Left added algorithms are usually 1-, 2- or 
3-move long. 

- Symmetry: 
If A is an algorithm that generates a permutation of a given cycle type, then transformed algorithm B(A), 
obtained by applying (anti)symmetry transformations on the set of letters <F, R, U, L, D, B> is also an 
algorithm that will generate another permutation of the same cycle type. This means that transforming an 
algorithm using all 48 possible cube (anti)symmetries will not change the cycle type of the associated 
permutations, or more explicitely if A generates a 5-cycle of edge-centers, then 48 more algorithms may 
be obtained simply by transforming letters. 

- Inversion: 
If A is an algorithm that generates a permutation of a given cycle type, then inverted algorithm A' is also 
an algorithm that will generate another permutation of the same cycle type. This means that for each 
already known algorithm, one more can be added simply by inversion. 

- Cycle-Shift: 
If A is an algorithm of length n that generates a permutation of a given cycle type, then the n algorithms 
obtained by cycle-shifting A will also generate permutations of the same cycle type. This means for 
example that alg NR' U N3R U' NR U N3R' U' and the shifted version U' NR' U N3R U' NR U N3R' will 
both give a 3-cycle of edge-centers. 

 
Using a combination of all these techniques, ie. conjugation + left add + symmetry + inversion + cycle-shift, it is 
usually possible to generate many N-cycles of a given type from just a limited number of seed algorithms. The 
problem now is how to find short and irreducible seeds. This is where algorithm templates can come into play… 
 

http://www.mementoslangues.fr/�
http://en.wikipedia.org/wiki/Permutation�
http://en.wikipedia.org/wiki/Symmetric_group�
http://en.wikipedia.org/wiki/Conjugacy_class�
http://groupprops.subwiki.org/wiki/Cycle_type_of_a_permutation�
http://en.wikipedia.org/wiki/Coset�
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Semi-Commutators 
 
Overview 
 
It has already been demonstrated that all permutations of even parity can be written as commutators. But a more 
general way of describing a permutation of even parity would be as follows : 
 

A (B C B') 
 
where A, B and C are multiple move sequences, (B C B') is a conjugator and C is a function of A. 
 
If C = A', then this expression gives the well-known commutator A B A' B' = [A, B]. We can go further by stating 
that C can also be a function of A, provided that the parity of the permutation is kept even. By decomposing A 
into a sequence of n basic moves: 
 

A = A1 A2 A3 … An 
 
sequence C can then be written as: 
 

C = C1 C2 C3 … Cn 
 
There are now 2 possible cases that will keep parity: 
 

C = An' … A3' A2' A1' 
 

C = A1' A2' A3' … An' 
 

In the first case, we have the well-known commutator: 
 

(A1 A2 A3 … An) . B . (An' … A3' A2' A1') . B' = [A, B] 
 
whereas in the second case, it is a semi-commutator: 
 

(A1 A2 A3 … An) . B . (A1' A2' A3' … An') . B' = ]A, B] 
 

There are just 4 ways of writing a semi-commutator: 
 

(A1 A2) . (B1 B2) . (A1' A2') . (B2' B1') = ]A1 A2, B1 B2] 
 

(A1 A2) . (B1 B2) . (A1' A2') . (B1' B2') = ]A1 A2, B1 B2[ 
 

(A1 A2) . (B1 B2) . (A2' A1') . (B1' B2') = [A1 A2, B1 B2[ 
 

(A1 A2) . (B1 B2) . (A2' A1') . (B2' B1') = [A1 A2, B1 B2] 
 
We can see that semi-commutator #4 is actually a commutator, so that a semi-commutator may simply be seen 
as an attempt to generalize the commutator concept. 
 
Example 
 
Semi-commutators may be useful for finding algorithms. Using for example a template such as ]X Y, Z P Q P'] to 
search for 15-cycles of corner-centers, will give the algorithm below, which is clearly not a commutator: 
 

]NR' NF', NL L' ND L] = NR' NF' . NL L' ND L . NR NF . L' ND' L NL' 
 
But if it is written as a commutator, then we have a 9-cycle of corner-centers: 
 

[NR' NF', NL L' ND L] = NR' NF' . NL L' ND L . NF NR . L' ND' L NL' 
 
 
 
 

http://www.mementoslangues.fr/�
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Block Decomposition 
 
Another way of understanding semi-commutators is from block decomposition of a sequence of moves. Consider 
for example a first block of n moves followed by a second block of the same length: there must be the same 
number of moves and inverted moves in the complete sequence of 2 blocks, in order to keep the permutation 
parity even. There are many ways of re-arranging moves and inverted moves in the sequence. In a simple 
arrangement, all non-inverted moves are placed in the first block and all inverted moves in the second block: 
 

First block: A1 A2 A3 … An 
Second block: same moves, but inverted, sequenced and partitioned differently 

 
By using semi-commutators, there are just 4 different ways of re-arranging inverted moves in the second block.  
 
This is shown in the table below, where a sequence of length 14 has been chosen and possible semi-
commutator structures are listed. 
 

Block partitioning – Semi-Commutators  – 14-Move Sequence Example 
Index First Block of Moves Second Block of Inverted Moves Semi-Commutators/Commutators 

1 (X Y Z P Q V A) (X' Y' Z' P' Q' V' A') [X, Y Z P Q V A[ 
    

2 (X) (Y Z P Q V A) (X') (Y' Z' P' Q' V' A') [X, Y Z P Q V A[ 
3 (X) (Y Z P Q V A) (X') (A' V' Q' P' Z' Y') [X, Y Z P Q V A] 
    

4 (X Y) (Z P Q V A) (X' Y') (Z' P' Q' V' A') ]X Y, Z P Q V A[ 
5 (X Y) (Z P Q V A) (X' Y') (A' V' Q' P' Z') ]X Y, Z P Q V A] 
6 (X Y) (Z P Q V A) (Y' X') (Z' P' Q' V' A') [X Y, Z P Q V A[ 
7 (X Y) (Z P Q V A) (Y' X') (A' V' Q' P' Z') [X Y, Z P Q V A] 
    

8 (X Y Z) (P Q V A) (X' Y' Z') (P' Q' V' A') ]X Y Z, P Q V A[ 
9 (X Y Z) (P Q V A) (X' Y' Z') (A' V' Q' P') ]X Y Z, P Q V A] 
10 (X Y Z) (P Q V A) (Z' Y' X') (P' Q' V' A') [X Y Z, P Q V A[ 
11 (X Y Z) (P Q V A) (Z' Y' X') (A' V' Q' P') [X Y Z, P Q V A] 

 
Semi-commutator #6 is then written as: 
 
[X Y, Z P Q V A[ = X Y . Z P Q V A . Y' X' . Z' P' Q' V' A' 
 
Whereas commutator #7 would read: 
 
[X Y, Z P Q V A] = X Y . Z P Q V A . Y' X' . A' V' Q' P' Z' 
 
Usefulness 
 
Semi-commutators are mainly used in searching for new algorithms and building arrays of seeds. For 
permutations involving more than 3 pieces, templates built on semi-commutators will usually give additional 
algorithms that will complement algorithms already found using commutators only. 
 

http://www.mementoslangues.fr/�
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Algorithm Templates 
 

Algorithm Templates – Corner-Centers 
Template Inverted Template N-cycle Moves 
[X, Y Z P] [X Y Z, P] 3-, 5-, 9-cycle 8 

[X, Y Z P Q] [X Y Z P, Q] 7-, 11-, 13-cycle 10 
[X Y, Z P Q] [X Y Z, P Q] 17-cycle 10 

[X Y, Z P Q V] [X Y Z P, Q V] 23-cycle 12 
]X Y, Z P Q V] [X Y Z P, Q V[ 15-cycle 12 

[X Y, Z P Q V A] [X Y Z P Q, V A] 19-, 21-cycle 14 
 

Algorithm Templates – Edge-Centers 
Template Inverted Template N-cycle Moves 
[X, Y Z P] [X Y Z, P] 3-cycle 8 

[X Y, Z P Q V] [X Y Z P, Q V] 5-cycle 12 
[X Y, Z P Q V A] [X Y Z P Q, V A] 7-cycle 14 

[X Y, Z P Q V A G] [X Y Z P Q V, A G] 9-cycle 16 
 
Note: 
]X Y, Z P Q V] = X Y . Z P Q V . X' Y' . V' Q' P' Z' is *not* a commutator 
[X Y, Z P Q V] = X Y . Z P Q V . Y' X' . V' Q' P' Z' *is* a commutator 
 
[X Y Z P, Q V[ = X Y Z P . Q V . P' Z' Y' X' . Q' V' is *not* a commutator 
[X Y, Z P Q V] = X Y Z P . Q V . P' Z' Y' X' . V' Q' *is* a commutator 
 

http://www.mementoslangues.fr/�
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Seed Algorithms 
 

Seed Algorithms – Corner-Centers 
Commutator General Form: [N2 moves, Face + N2 moves] 

Template / Inverted Template Seed Algorithms – Examples N-cycle Moves 
[X, Y Z P] / [X Y Z, P] [NR, F NL F'] 3-cycle 8 
[X, Y Z P] / [X Y Z, P] [NU, NL' U' NL'] 5-cycle 8 

[X, Y Z P Q] / [X Y Z P, Q] [NR', NU' L2 NF' NU'] 7-cycle 10 
[X, Y Z P] / [X Y Z, P] [NB, NR B2 NU] 9-cycle 8 

[X, Y Z P Q] / [X Y Z P, Q] [NF', NR' F NL' NU'] 11-cycle 10 
[X, Y Z P Q] / [X Y Z P, Q] [NL', ND' NF' L' NB'] 13-cycle 10 

]X Y, Z P Q V] / [X Y Z P, Q V[ ]NR' NF', NL L' ND L] 15-cycle 12 
[X Y, Z P Q] / [X Y Z, P Q] [NB NF', ND F' NR] 17-cycle 10 

[X Y, Z P Q V A] / [X Y Z P Q, V A] [NF2 NB', ND' F' NL ND NU'] 19-cycle 14 
[X Y, Z P Q V A] / [X Y Z P Q, V A] [NB NF, NU F NL2 NF NL] 21-cycle 14 

[X Y, Z P Q V] / [X Y Z P, Q V] [NB NF', NR B' NL' ND] 23-cycle 12 
2-Cycle + 2-Cycle 

[X, Y Z P] / [X Y Z, P] [NR, U2 NF2 U2] 2c + 2c 8 
[X, Y Z P[ / ]X Y Z, P] [NU, F2 NR2 F2[ 2c + 2c 8 
]X Y, Z P[ / ]X Y, Z P[ ]R2 NU, R2 NF2[ 2c + 2c 8 

4-Cycle + 2-Cycle 
[X, Y Z P Q] / [X Y Z P, Q] [NR2, U' NL2 U NF2] 4c + 2c 10 
[X Y, Z P Q] / [X Y Z, P Q] [NR U', NL NU2 NL'] 4c + 2c 10 

 
Seed Algorithms – Edge-Centers 

Commutator General Form: [N3 moves, Face + N2 moves] 
Template / Inverted Template Seed Algorithms – Examples N-cycle Moves 

[X, Y Z P] / [X Y Z, P] [N3R', U NR U'] 3-cycle 8 
[X Y, Z P Q V] / [X Y Z P, Q V] [N3R N3U, F' NR F NR'] 5-cycle 12 

[X Y, Z P Q V A] / [X Y Z P Q, V A] [N3R2 N3F2, F' U' NR' U F] 7-cycle 14 
[X Y, Z P Q V A G] / [X Y Z P Q V, A G] [N3R N3U, R' F2 NU NL2 F2 R] 9-cycle 16 

2-Cycle + 2-Cycle 
[X, Y Z P] / [X Y Z, P] [N3R, F2 NU2 F2] 2c + 2c 8 
[X, Y Z P[ / ]X Y Z, P] [N3F2, U2 NR' U2[ 2c + 2c 8 

4-Cycle + 2-Cycle 
[X Y, Z P Q V A] / [X Y Z P Q, V A] [N3R N3U, R' F' NU F R] 4c + 2c 14 

 

http://www.mementoslangues.fr/�


 

Seed Algorithms   7/8   http://www.mementoslangues.fr/ Algorithm Finder 

Algorithm Finder 
 

Search for Irreducible Seed Algorithms – 1 
Algorithm Finder can be used to search for irreducible seeds 

 
Edge-Center 11-cycle – Selected params: set of 6-gen moves – 11 pieces – Permutation order: 11 

 
All stickers of the first orbit of edge-centers have been set to -1. Algorithms are then filtered out both by 
permutation order and by number of twisted/flipped/moved pieces. 
 

http://www.mementoslangues.fr/�
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Search for Irreducible Seed Algorithms – 2 
Symmetry- and inversion-duplicate seed algorithms are filtered out 

 
Edge-Center 11-cycle – Selected params: set of 6-gen moves – 11 pieces – Permutation order: 11 

 
Flipped Midge 11-cycle – Selected params: set of 6-gen moves – 12 pieces – Permutation order: 22 

 

http://www.mementoslangues.fr/�

