True Centers

Introduction

True centers only exist for odd-order cubes, eg. $3 \times 3 \times 3,5 \times 5 \times 5$ and $7 \times 7 \times 7$ cubes. Compared to other types of cube pieces, ie. corners, midges, edges or centers, true centers are more restricted in their moves. It should be noted that only 4 -spot or 6 -spot patterns do exist in the case of true center legal moves.

Permutation of True Centers

Due to mechanical restrictions, true centers do not behave exactly as other centers do. But the same permutation laws apply to them with the added restriction of orientation parity. Main restrictions are listed below:

1- Only 4 -spot and 6 -spot true center permutations are legal
2- Adjacent centers will always stay adjacent through any legal move
3- Opposed centers will always stay opposed through any legal move
4- For a solved regular cube, the sum of the orientations of all centers will always be equal either to 0° or 180° modulo 360°

Cycle structures of true center permutations, shown in the table below, are either of even or of odd parity. Odd parity permutations imply that some other pieces are also messed up, eg. midges.

True Centers - Cycle Structures			
N-spot	Cycle Structures	Notes	Permutation Parity
4 -spot	2 2-cycles	2-cycles: 2 opposed centers	even
4 -spot	4 -cycle	-	odd
6 -spot	2 3-cycles	3-cycles: 3 adjacent centers	even
6 -spot	3 2-cycles	-	odd

Number of Permutation/Orientation Cases

For 4 -spot patterns, there are 3 permutation cases of even parity and 6 of odd parity, for a total of 9 cases. For each of these cases, there are also 4096 distinct orientations, where each center orientation can be equal to 0°, $90^{\circ}, 180^{\circ}$ or 270°, from which 2048 are of even parity and 2048 of odd parity. Orientations are of even parity if the sum of all 6 center angular rotations is equal either to 0° or 180° modulo 360°, and of odd parity otherwise.

The total number of cases for 4 -spot patterns is then given by:

$$
9 \times 4096=36864
$$

For 6 -spot patterns, there are 8 permutation cases of even parity and 6 of odd parity, for a total of 14 cases. For each of these cases, there are also 4096 distinct orientations.

The total number of cases for 6 -spot patterns is then given by:

$$
14 \times 4096=57344
$$

True Center Permutations

4-Spot Pattern

There are 9 cases of 4 -spot patterns.

True Center Permutations - 4-Spot Patterns - 2 2-Cycles			
Reference	CR2	CU2	CF2
Permutations - Let	(F B) (U D)	(FB) (R L)	(RL) (U D)
Permutations - Num	(0 5) (2 4)	(0 5) (1 3)	(13) (2 4)
Cycles	2 2-cycles	2 2-cycles	2 2-cycles
Permutation Parity	even	even	even

True Center Permutations - 4-Spot Pattern - 4-Cycles

Reference	CR	CR'	CU	CU'
Permutations - Let	(F U B D)	(F D B U)	(F L B R)	(F R B L)
Permutations - Num	(0254)	(0452)	(035 1)	(015 3)
Cycles	4-cycle	4-cycle	4 -cycle	4-cycle
Permutation Parity	odd	odd	odd	odd

True Center Permutations - 4-Spot Pattern - 4-Cycles

| Reference | CF | CF' |
| :---: | :---: | :---: | :---: | :---: | :---: |

6-Spot Pattern

There are 14 cases of 6 -spot patterns.

True Center Permutations - 6-Spot Pattern - 2 3-Cycles				
Reference	CR CU	CR CU'	CR CF	CR CF'
Permutations - Let	(F U R) (LB D)	(F U L) (RBC)	(F R D) (UBL)	(F L D) (R CB)
Permutations - Num	(0 21 1) (354)	(0 23) (154)	(0 1 4) (253)	(0 3 4) (125)
Cycles	23 -cycles	23 -cycles	23 -cycles	23 -cycles
Permutation Parity	even	even	even	ev
True Center Permutations - 6-Spot Pattern - 2 3-Cycles				
Reference	CR' CU	CR' CU'	CR' CF	CR' CF'
Permutations - Let	(F D R) (ULB)	(F D L) (R B U)	(F L U) (R D B)	(FR U) (LD B)
Permutations - Num	(0 41) (2 35)	(043)(152)	(0 3 2) (145)	(012) (345)
Cycles	23 -cycles	23 -cycles	23 -cycles	2 3-cycles
Permutation Parity	even	even	even	even

True Center Permutations - 6-Spot Pattern - 3 2-Cycles

Reference	CR CU2	CR CF2	CR2 CU	CR2 CU'

Permutations - Let	(F U) (R L) (D B)	(F D) (UB) (R L)	(F R) (U D) (L B)	(F L) (R B) ($\mathrm{U}^{\text {D }}$)
Permutations - Num	$(02)(13)(45)$	(0 4) (2 5) (13)	$(01)(24)(35)$	$(03)(15)(24)$
Cycles	3 2-cycles	3 2-cycles	3 2-cycles	3 2-cycles
Permutation Parity	odd	odd	odd	odd
True Center Permutations - 6-Spot Pattern - 3 2-Cycles				
Reference	CR2 CF	CR2 CF'		
Permutations - Let	(F B) (R D) (UL)	(F B) (R U) (L D)		
Permutations - Num	$(05)(14)(23)$	(0 5) (12) (3 4)		
Cycles	3 2-cycles	3 2-cycles		
Permutation Parity	odd	odd		

Algorithms

